ON THE PROBLEN OF OPTIMUM
 ROCKET TRAJECTORIES

(K zadache ob optimal nyct trarktoritaki raciety)

PMM Vol.28, № 2, 1964, pp. 373-374
I.V. IOSLOVICH
(Moscow)
(Received January 17, 1963)

Abstract

Extremum problems related to the change of the velocity vector V of an ideally guided rocket by a vector ΔV in a constant gravitational field have been studied in [1 to 3].

In this paper the solution proposed by Gorelov [1] for the problem of the maximum powered flight duration $\Delta t=t_{f}-t_{1}$ in a horizontal plane for a prescribed final mass m_{q} is derived from the equations for the extremals obtained by Leitmann [2]. A study is made of the special case in which for certain trajectory phases the thrust is used only to maintain constant altitude.

For the case of flight in a vertical plane, it is shown that Gorelov's condition $\beta / m=$ const, where $\beta=-m^{\circ}$, will not be necessary in the general case. On the other hand, we wish to find $\max m_{\mathrm{g}}$ for an unspecified t_{f}, for some class of boundary conditions 'we shall have $\beta \neq \beta_{m}$.

1. Filght in horisontal plane. As is known [1 and 2], the solution of the problem of finding max t_{f} for a prescribed m_{f} coincides with the solution of the problem of finding $\max m_{f}$ for a speciffed t_{f}. In [2] it is noted that an intermediate thrust may appear in the solution of the latter problem. In this case β is detarmined by the fifth equation in (8) and by Equation (20). If we take Equation (23) Into consideration, the above equations may be written as

$$
\begin{equation*}
\lambda_{m}=\frac{c^{2} \beta}{m^{2}}\left[\left(\frac{\beta}{m}\right)^{2}-\xi^{2}\right]^{-1 / 2}\left[\left(\frac{\hat{\lambda}_{Y}}{V}\right)^{2}+\lambda_{V} V^{2}\right]^{1} \tag{1.1}
\end{equation*}
$$

The third equation in (8), taking (20) and (23) into consideration, may be written as

$$
\begin{equation*}
\left.\lambda_{m}=\frac{c^{2} \beta^{2}}{m^{3}}\left[\left(\frac{c \beta}{m}\right)^{2}-g^{2}\right]^{-1 / 2}\left[\left(\frac{\lambda_{\gamma}}{V}\right)^{2}+\lambda_{V}\right]^{2}\right]^{1} \tag{1.2}
\end{equation*}
$$

It is directly verifiable that

$$
\begin{equation*}
\left(\frac{\lambda_{\gamma}}{V}\right)^{2}+\lambda_{V}^{2}=\text { const } \tag{1.3}
\end{equation*}
$$

Dividing (1.2) by (1.1), we find

$$
\begin{equation*}
\frac{\lambda_{m} \cdot}{\lambda_{i n}}=\frac{\beta}{m}, \quad \text { or } \quad \lambda_{m}=\frac{c_{1}}{m} \tag{1.4}
\end{equation*}
$$

Substituting the last expression into (1.1) and taking (1.3) into consideration, after some simple transformations we obtain

$$
\begin{equation*}
\frac{\beta}{m}=\text { const } \tag{1.5}
\end{equation*}
$$

as in Gorelov's solution.
If the restriction $\beta \leqslant \beta_{\max }$ is imposed, this regime will evidently have place in the entire trajectory, provided that the condition $\beta\left(t_{i}\right) \leqslant \beta_{\text {mav }}$ is satisfied. We shall write this in explicit form.

Following Lur'e [3], we write the equations of motion in vector form

$$
\begin{equation*}
V^{\cdot}=\left[\left(\frac{r}{m}\right)^{2}-g^{2}\right]^{1 / 3} e, \quad e \cdot e=1, \quad m^{\cdot}=-\beta \tag{1.6}
\end{equation*}
$$

In [3] it is shown that $0=$ const. If we also take (1.5) into account and integrate, we find

$$
\begin{equation*}
\frac{\beta}{m}=\frac{1}{\Delta t} \ln \frac{m_{i}}{m_{j}}, \quad \Delta V=\left\lvert\, \Delta V_{i}==\left[\left(c \ln \frac{m_{i}}{m_{j}}\right)^{2}-(g \Delta t)^{2}\right]^{1 / 2}\right. \tag{1.7}
\end{equation*}
$$

The condition appears in the form

$$
\begin{equation*}
\rho\left(l_{i}\right)=m_{i} g \ln \frac{m_{i}}{m_{j}}\left[\left(c \ln \frac{m_{i}}{m_{j}}\right)^{2}-(\Delta V)^{2}\right]^{-1 / 2} \leqslant \beta_{\max } \tag{1.8}
\end{equation*}
$$

To obtain a final solution of the problem of finding max $t_{\text {, }}$ for a piescribed m_{f}, we must check the resulting solution for the optimum capa:ity in comparison with the solution contalning arcs of power-off flig's, where $B=m g / c$, since on these ares Equations (1.1) and (1.2) become meaningless. It should be noted that for this case Formula (1.6) of [1] is alsc inapplicable.

Let the trajectory consist of two arcs such that on the first arc B / m const $\neq g / c$ and the mass varies from m_{1} to m_{1}, while on the second arc $\beta=m \sigma / c$ and the mass varies from m_{1} to m_{g}. Then the total time of flight will correspondingly consist of two cerms

$$
\begin{equation*}
\Delta t=\frac{1}{g}\left[\left(c \ln \frac{m_{i}}{m_{1}}\right)^{2}-(\Delta V)^{2}\right]^{1 / 2}+\frac{c}{g} \ln \frac{m_{1}}{m_{f}} \tag{1.9}
\end{equation*}
$$

Calculating the derivative $\partial \Delta t / \partial m_{1}$, we find that it is negative. If we interchange the positions of the arcs, the derivative becomes positive. Thus, any inclusion of an arc with $\beta=m g / c$ in the trajectory will reduce t_{t}.
2. Flignt in vertioal plane. Using the equations of motion in vector form, we write

Fig. 1

$$
\begin{equation*}
\mathbf{v}^{\cdot}=\frac{c \beta}{m} \mathbf{e}+\mathbf{g}, \quad \mathbf{e} \cdot \mathbf{e}=1, \quad m^{*}=-\beta \tag{2.1}
\end{equation*}
$$

We shall solve the problem of finding max t_{p} for a prescribed m_{f}. Using L.S.Pontriagin's method, we find

$$
\begin{align*}
& H=\lambda\left(\frac{c \beta}{n} \mathbf{e}+\mathbf{g}\right)-\lambda_{, n^{\beta}} \\
& \lambda^{\cdot}=0, \quad \mathbf{e}=\frac{\lambda}{|\lambda|}=\text { const } \tag{2.2}
\end{align*}
$$

Integrating (2.1) and noting that is constant, we obtain

$$
\Delta \mathrm{V}=c \ln \frac{m_{i}}{m_{f}} \mathrm{e}+\mathrm{g} \Delta t
$$

From the triangle $A B C$ (Fig.l) we determine the value of Δt. Evidently, in this case e g $\leqslant 0$. The condition

$$
\begin{equation*}
\int_{i_{i}}^{t_{f}} \beta d t=m_{i}-m_{f} \tag{2.3}
\end{equation*}
$$

is imposed for β and not Gorelov's condition where $\beta / m=$ const.
In the general case, condition (2.3) is satisfied by infinitely many solutions.

If we wish to solve the problem of finding max m_{p} for an unspecified t_{f}, then the side $B C$ (Fig.1) must be a minimum. Let ΔV have a vertical component directed downward and let β max be sufficiently large. Then the triangle $A B C$ will be a right triangle and the quantities Δt and m, will be uniquely defined. As before, B will satisfy the condition (2.3).

An example of such non-uniqueness of the solution was indicated by Leitmann [4] (m_{f} is prescribed and the horizontal component of velocity is made a maximum).

BIBLIOGRAPHY

1. Gorelov, Iu.A., 0 dvukh klassakh ploskikh ekstremal'nykh dvizhenii rakety v pustote (On two classes of plane extremal motions of a rocket in vacuum). PNM Vol.24, No 2, 1960.
2. Leitmann, G., Ob optimal'nykh traektoriiakh rakety (On optimum rocket trajectories). PNM Vol.25, N 6, 1961.
3. Lur'e, A.I., Zamechanie k rabote G.Leitmanna "Ob optimal'nykh traektorilakh rakety" (Remarks on G.Leitmann's article "On optimum rocket trajectories). PNM Vol.26, No 2, 1962.
4. Leftmann, G., On a class of variational problems in rocket flight. J. Aero/Space Sci., № 26, 1959.
